A-local symmetric spectra

نویسنده

  • J. F. Jardine
چکیده

This paper is about importing the stable homotopy theory of symmetric spectra [4] and more generally presheaves of symmetric spectra [8] into the Morel-Voevodsky stable category [9], [11], [12]. Loosely speaking, the latter is the result of formally inverting the functor X 7→ T∧X on the category of pointed simplicial presheaves on the smooth Nisnevich site of a field within the Morel-Voevodsky A-local homotopy theory, where T is defined to be the quotient of schemes A/(A − 0). The MorelVoevodsky stable homotopy theory is exotic in at least two ways: it lives within a localized homotopy theory of simplicial presheaves, and the object T is not a circle in any sense, but is rather weakly equivalent within the A-local theory to an honest suspension S ∧Gm of the scheme underlying the multiplicative group. Smashing with T is thus a combination of topological and geometric suspensions. The Morel-Voevodsky stable category is fundamental for Voevodsky’s proof of the Milnor Conjecture [11]. It arises from a suitable notion of stable equivalence, subsumed by a proper closed simplicial model structure on the category of presheaves of T -spectra on a smooth Nisnevich site. A presheaf of T -spectra X consists of pointed simplicial presheaves X, n ≥ 0, together with bonding maps T ∧Xn → X. A symmetric object in this category, or rather a presheaf of symmetric T -spectra, is a presheaf of T -spectra Y , equipped with symmetric group actions Σn × Y n → Y n in all levels such that all composite bonding maps T∧p ∧ X → X are (Σp×Σn)-equivariant. The main new results of this paper assert that the category of presheaves of symmetric T -spectra carries a notion of stable equivalence within the A-local theory which is part of a proper closed simplicial model structure (Theorem 4.18), and such that the forgetful functor to presheaves of T -spectra induces an equivalence of the stable homotopy category for presheaves of symmetric T -spectra with the Morel-Voevodsky stable category (Theorem 5.14). This collection of results gives a category which models the Morel-Voevodsky stable category, and also has a symmetric monoidal smash product.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transmission properties of one dimensional fractal structures

In this paper, the optical properties of one dimensional fractal structures are investigated. We consider six typical fractal photonic structures: the symmetric dual cantor-like fractal structure, the asymmetric dual cantor-like fractal structure, the single cantor-like fractal structure, the symmetric dual golden-section fractal structure, the asymmetric dual golden-section fractal structure a...

متن کامل

INVERTIBLE SPECTRA IN THE E(n)-LOCAL STABLE HOMOTOPY CATEGORY

Suppose C is a category with a symmetric monoidal structure, which we will refer to as the smash product. Then the Picard category is the full subcategory of objects which have an inverse under the smash product in C, and the Picard group Pic(C) is the collection of isomorphism classes of such invertible objects. The Picard group need not be a set in general, but if it is then it is an abelian ...

متن کامل

Symmetric Spectra

Introduction 150 Organization 152 Acknowledgments 152 1. Symmetric spectra 153 1.1. Simplicial sets 153 1.2. Symmetric spectra 154 1.3. Simplicial structure on Sp 156 1.4. Symmetric Ω-spectra 158 2. The smash product of symmetric spectra 159 2.1. Symmetric sequences 159 2.2. Symmetric spectra 162 2.3. The ordinary category of spectra 165 3. Stable homotopy theory of symmetric spectra 165 3.1. S...

متن کامل

m at h . A T ] 4 M ar 1 99 8 SYMMETRIC SPECTRA

Introduction 2 1. Symmetric spectra 5 1.1. Simplicial sets 5 1.2. Symmetric spectra 6 1.3. Simplicial structure on Sp 8 1.4. Symmetric Ω-spectra 10 2. The smash product of symmetric spectra 11 2.1. Symmetric sequences 11 2.2. Symmetric spectra 14 2.3. The ordinary category of spectra 18 3. Stable homotopy theory of symmetric spectra 19 3.1. Stable equivalence 20 3.2. Model categories 26 3.3. Le...

متن کامل

Second symmetric powers of chain complexes

We investigate Buchbaum and Eisenbud's construction of the second symmetric power $s_R(X)$ of a chain complex $X$ of modules over a commutative ring $R$. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several explicit computations and examples. We use this construction to prove the following vers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998